Downregulation of a novel human gene, ROGDI, increases radiosensitivity in cervical cancer cells

نویسندگان

  • Yi-Fan Chen
  • Jonathan J. Cho
  • Tsai-Hua Huang
  • Chao-Neng Tseng
  • Eng-Yen Huang
  • Chung-Lung Cho
چکیده

ROGDI is a protein that contains a leucine zipper domain and may be involved in cell proliferation. In addition, ROGDI is associated with genome stability by regulating the activity of a DNA damage marker, γ-H2AX. The role of ROGDI in tumor radiosensitization has not been investigated. Previous studies have indicated that radiosensitivity is associated with DNA repair and the cell cycle. In general, the G2/M DNA damage checkpoint is more sensitive to radiation, whereas the G1/S phase transition is more resistant to radiation. Inhibition of cyclin-dependent kinases (CDKs) can lead to a halt of cell cycle progression and a stay at different phases or checkpoints. Our data show that the downregulation of ROGDI led to a decreased expression of CDK 1, 2, cyclin A, B and resulted in a G2/M phase transition block. In addition, the downregulation of ROGDI increased cell accumulation at the G2 phase as detected using flow cytometry and decreased cell survival as revealed by clonogenic assay in HeLa and C33A cells following irradiation. These findings suggest that the downregulation of ROGDI can mediate radiosensitivity by blocking cells at G2/M, the most radiosensitive phase of the cell cycle, as well as exerting deleterious effects in the form of DNA damage, as shown by increased γ-H2AX activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Folic Acid-Conjugated Coated Iron Oxide Nanoparticles in The Radiosensitization of Human Cervical Carcinoma Cell Line at Clinical Electron energies (6MeV)

Background and Purpose: The objective of this study was to investigate the therapeutic effect of Folic Acid-Conjugated polyglycerol coated iron oxide nanoparticles on the radiosensitivity of HeLa cells when irradiated with 6 MeV electron beams. Materials and Methods: Different concentrations of iron oxide nanoparticles (PG-SPIONs and FA-PG-SPIONs (25, 50, 100, 200 µg ml-1)) were synthesized by...

متن کامل

LncRNA Miat Promotes Proliferation of Cervical Cancer Cells and Acts as an Anti-apoptotic Factor

There are a sub-population of cells in tumor tissues known as cancer stem cells (CSCs) which have similar features with stem cells, including self-renewal and differentiation capacity. Recently, it was established that not only stem cells factors such as Oct4, but also ES-associated lncRNAs are contributing to various regulatory aspects of CSCs. Myocardial infarction associated transcript (MIAT...

متن کامل

Developing Michigan Cancer Foundation 7 Cells with Stable Expression of E7 Gene of Human Papillomavirus Type 16

Background: Human papillomavirus (HPV) is responsible for the development of cervical neoplasia.  Infection with human papillomavirus type 16 (HPV-16) is a major risk factor for the development of cervical cancer. The virus encodes three oncoproteins (E5, E6 and E7), of which, the E7 oncoprotein is the major protein involved in cell immortalization and transformation o...

متن کامل

Dihydroartemisinin increases radiosensitivity of A549 lung cancer cells

Background: Radiotherapy is the gold standard in the treatment of lung cancer. However, the radiosensitization of cancerous cells requires further improvement. Here, we investigated the effect of dihydroartemisinin (DHA) on the radiosensitization of non-small cell lung cancer (NSCLC) cells. Methods: Cell proliferation and cell cycle assays were carried out using A549 cells exposed to DHA. The e...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016